Répondre :
Rectification de l'énoncé :
-------------------------------------
On considère le triangle ABC.
Démontrer que ce triangle est rectangle quel que soit le nombre n ≥ 1.
AB = n
BC = (n² − 1)/2
CA = (n² + 1)/2
Solution :
-------------
Il faut que n ≥ 1 car (n² − 1) étant une longueur ne peut être négatif.
Et, selon le théorème de Pythagore, si le triangle ABC est rectangle,
le carré de son hypothénuse égale le carré de ses deux autres côtés
Or, on a, pour tout n ≥1 :
AB² = n²
BC² = (n²/2 − 1/2)²
= n⁴ − 2(n²/2)(1/2) + 1/4
= n⁴ − n²/2 + 1/4
CA² = (n²/2 + 1/2)²
= n⁴ + 2(n²/2)(1/2) + 1/4
= n⁴ + n²/2 + 1/4
Et : CA² − BC² = (n⁴ + n²/2 + 1/4) − (n⁴ − n²/2 + 1/4)
= n⁴ + n²/2 + 1/4 − n⁴ + n²/2 − 1/4
= n²
= AB²
On a donc bien, pour tout n ≥ 1 : CA² = AB² + BC²
Le triangle ABC est donc bien rectangle en B pour tout n ≥ 1.