Réponse :
Bonjour,
Explications étape par étape :
[tex]\left\{ \begin{array}{ccc}u_0&=&2\\\\u_{n+1}&=&\dfrac{u_n}{5} +3*(\dfrac{1}{2} )^n\\\\v_n&=&u_n-10*(\dfrac{1}{2} )^n\end {array} \right.\\[/tex]
[tex]\\\\\dfrac{v_{n+1}}{v_{n}} =\dfrac{u_{n+1}-10*(\frac{1}{2})^{n+1} }{u_{n}-10*(\frac{1}{2})^{n}} \\\\\\=\dfrac{\frac{u_n}{5} +3*(\frac{1}{2} )^n-10*(\frac{1}{2})^{n+1}}{u_{n}-10*(\frac{1}{2})^{n}} \\\\\\=\dfrac{\frac{u_n}{5} -\frac{1}{5}*10*(\frac{1}{2})^{n} +3*(\frac{1}{2} )^n-10*(\frac{1}{2})^{n+1}+\frac{1}{5}*10*(\frac{1}{2})^{n} }{u_{n}-10*(\frac{1}{2})^{n}} \\\\\\=\dfrac{1}{5} +(\dfrac{1}{2})^n*(3-\frac{10}{2}+2)\\ \\\\=\dfrac{1}{5}[/tex]