Bonjour, je ne sais pas comment mi prendre pour cette exercice .
C est un point d'un demi-cercle de diamètre [AB] et de centre O.
AH = 1cm et AB = 6 cm
1. Montrer que AC = √6cm
2. Réalisez une figure semblable à celle donnée pour construire un segment de √10 cm de longueur.
Merci de m'aider ...
Bonjour,
1) Si l’un des côtés d’un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle (le diamètre du cercle circonscrit est alors son hypoténuse).
C'est le cas de ton triangle ABC
OA = 6/2 = 3 cm
OH = OA - AH = 3-1 = 2 cm
Le triangle OCH est rectangle en H, on peut lui appliquer l'égalité de Pythagore :
CH²+OH² = OC²
CH² = OC² - OH² = 3² - 2² = 9-4 =
CH² = 5
Le triangle ACH est rectangle en H, on peut lui appliquer l'égalité de Pythagore :
CA² = CH² + AH² = 5+1 = 6
[tex]CA=\sqrt{6}[/tex]
2) Il faut augmenter les dimensions de la figure selon un rapport d'augmentation de :
[tex]R=\frac{\sqrt{10}}{\sqrt{6}} = \sqrt{\frac{5}{3}}[/tex]
Le diamètre [tex]AB=6\sqrt{\frac{5}{3}}[/tex]
La distance [tex] AH = \sqrt{\frac{5}{3}} [/tex]
J'espère que tu as compris
A+