Répondre :
Réponse :
Bonsoir
Explications étape par étape :
On va travailler avec des axes et un triangle .
Trace:
un axe horizontal passant par les centres des gros tuyaux
un axe vertical passant par les centres des petits tuyaux
Soient:
O le point d'intersection de ces deux axes (centre du grand cercle extérieur)
A le centre du gros tuyau à droite
B le centre du petit tuyau supérieur
C le point de tangence du petit tuyau avec l'enveloppe extérieure (grand cercle) en haut.
soit x le rayon du petit tuyau
Dans le triangle OAB rectangle en O on a: OA=12 et AB=12+x
D'après le th de Pythagore OB²=AB²-OA²
OB=V[(12+x)²-12²]=V(x²+24x)
Rayon du grand cercle OC=OB+BC=V(x²+24x)+x
il reste à trouver la solution de x+V(x²+24x)=24
après un petit encadrement on note que la solution est x=8cm
vérification 8+V(64+24*8)==8+16=24
donc le diamètre des petits tuyaux est 16cm.