Répondre :
Explications étape par étape :
EX1
A = 4x + 36
⇔ A = 4 ( x + 9 )
B = 5x² - 10x
⇔ 5x ( x - 2 )
C = 2x . ( x - 3 ) + ( -2x + 1 ) ( x - 3 )
⇔ C = ( x - 3 ) . [ ( 2x ) + ( -2x + 1 ) ]
⇔ C = ( x - 3 ) . ( 2x - 2x - 1 )
⇔ C = ( x - 3 ) ( -1 )
⇔ C = - ( x - 3 )
D = ( 5x + 2 )² - ( 5x + 2 ) ( x - 1 )
⇔ D = ( 5x + 2 ) [ ( 5x + 2 ) - ( x - 1 ) ]
⇔ D = ( 5x + 2 ) ( 5x + 2 - x + 1 )
⇔ D = ( 5x + 2 ) ( 4x + 3 )
E = ( 3x + 3 ) - ( 3x + 3 ) ( x - 7 )
⇔ E = ( 3x + 3 ) [ 1 - ( x - 7 ) ]
⇔ E = ( 3x + 3 ) ( 1 - x + 7 )
⇔ E = ( 3x + 3 ) ( -x + 8 )
EX2
F = 3x ( 2x - 1 ) - ( 2x - 1 )²
1. F = ( 2x - 1 ) [ 3x - ( 2x - 1 ) ]
⇔ F = ( 2x - 1 ) ( 3x - 2x + 1 )
⇔ F = ( 2x - 1 ) ( x + 1 )
2. F = ( 2x - 1 ) ( x + 1 ) double distributivité
⇔ F = 2x² + 2x - x - 1
⇔ F = 2x² + x - 1
3. Pour x = -2
F = 2 ( -2 )² + ( -2 ) - 1
⇔ F = 2 * 4 -2 - 1
⇔ F = 8 - 3
⇔ F = 5