Réponse :
bonjour
Explications étape par étape :
n=1
1/1-1/(1+1)=1/1-1/2
1/1=2/2
2/2-1/2=1/2
1/1*2
1/1(1+1)
1/1-1/2= 1/1(1+1)
n=2
1/2-1/3=
1/2=3/6
1/3=2/6
1/2-1/3=3/6-2/6
1/6
1/2*3 1/2(2+1)
1/2-1/3=1/2(2+1)
n=3
1/3-1/3+1)
1/3-1/4
1/3=4/12
1/4=3/12
4/12-3/12=1/12
1/3*4=1/3(3+1)
n
1/n-1/(n+1)
1/n=1(n+1)/n(n+1)
1/n+1= n/n(n+1)
(n+1)-n/n(n+1)
n+1-n/n(n+1)
1/n(n+1)
1/2= 1/1*2 =1/1(1+1)
1/1(1+1)=1/1-1/2
1/6 =1/2*3
1/2(2+1)=1/2-1/(2+1)=1/2-1/3
1/12=1/3*4
1/3(3+1) = 1/3-1/4
1/20=1/4*5
1/4(4+1) =1/4-1/4+1) =1/4-1/5
1/30=1/5*6
1/5(5+1) =1/5-1/(5+1)=1/5-1/6
1/42=1/6*7
1/6(6+1)=1/6-1/(6+1)
1/6+1/7
1/52=1/7*8
1/7(7+1)=1/7-1/(7+1)
1/7-1/8
1/72=1/8*9
1/8(8+1)
1/8-1/9
1/90=1/9*10
1/9(9+1)
1/9-1/(9+1)
1/9-1/10
P=1/1-1/2+1/2-1/3+1/3*1/4+1/4-1/5+1/5-1/6+1/6+1/7+1/7-1/8+1/8-1/9+1/9-1/10
il reste
1/1-1/10
10/10-1/10
9/10