Répondre :
Bonsoir,
Factoriser et résoudre :
A = 25x²-81-(x+1)(5x+9)
A = (5x)² - 9² - (x + 1)(5x + 9)
A = (5x - 9)(5x + 9) - (x + 1)(5x + 9)
A = (5x + 9)(5x - 9 - x - 1)
A = (5x + 9)(4x - 10)
A = 2(5x + 9)(2x - 5) = 0
Un produit de facteur est nul si et seulement si au moins un de ses facteurs est nul
5x + 9 = 0 ou 2x - 5 = 0
5x = -9 ou 2x = 5
x = -9/5 ou x = 5/2
B= 25x²+30x+9=(5x-1)(5x+3)
B = (5x)² + 2 * 5x * 3 + 3² = (5x - 1)(5x + 3)
(5x + 3)² = (5x - 1)(5x + 3)
(5x + 3)² - (5x - 1)(5x + 3) = 0
(5x + 3)(5x + 3 - 5x + 1) = 0
(5x + 3)(4) = 0
4(5x + 3) = 0
5x + 3 = 0
5x = -3
x = -3/5
C= (7x+3)(4x-1)=-49x²+42x-9
(7x + 3)(4x - 1) = (-7x - 3)²
(7x + 3)(4x - 1) + (7x + 3)² = 0
(7x + 3)(4x - 1 + 7x + 3) = 0
(7x + 3)(11x + 2) = 0
7x + 3 = 0 ou 11x + 2 = 0
7x = -3 ou 11x = -2
x = -3/7 ou x = -2/11