Répondre :
bjr
déjà on élimine x² = -1 ; un carré ne peut pas être négatif => pas de solution
comme x² = -7 en dernier - pas de solution
ensuite
pensez à a² - b² = (a-b) (a+b)
on aura donc
x² = 1
soit x² - 1 = 0
x² - 1² = 0
(x - 1) (x + 1) = 0
soit x = 1 soit x = -1
idem pour les autres :)
Bonjour
Pour progresser, tu dois t'exercer. Je te fais les rappels nécessaires et traiterai un exemple, mais tu feras les autres. Tu pourras demander en commentaire si besoin.
Rappel :
La règle des signes : si tu multiplies deux nombres de même signe, alors le résultat est positif. Si les signes sont différents alors le résultat est négatif.
A partir de cette règle, tu tires deux conséquences :
- un nombre élevé au carré, c'est à dire multiplié par lui même est forcément positif. si tu as x² = - ... alors pas de solution dans R.
- une équation du style X^2 = +...
admettra deux solutions une positive et une négative , qui seront + [tex]\sqrt{x}[/tex]
et -[tex]\sqrt{x}[/tex]
exemple :
1) x² = 1
1 est positif. J'ai donc deux solutions : +[tex]\sqrt{1}[/tex] et - [tex]\sqrt{1}[/tex] . Comme on connait les valeurs exactes, on dira : les solutions sont +1 et -1
2) (2x-1)² = 9
posons X = (2x-1)
on a donc X = + V9 = 3 et X = - V9
Trouvons maintenant "x" .
on a deux solutions :
2x-1 = 3 et 2x-1 = -3
2x= 2 2x = -2
x =1 x = -2/2
x = -1