Répondre :
bjr
a)
on factorise le 1er membre
on calcule les racines de -2x² + 15x - 7 avec le discriminant ;
on trouve : 1/2 et 7
sa factorisation est : -2(x - 1/2)(x - 7)
on étudie le signe de -2(x - 5)(x - 1/2)(x - 7) en faisant un tableau des signes
x 1/2 5 7
-2 - - - -
x - 5 - - 0 + +
x - 1/2 - 0 + + +
x - 7 - - - 0 +
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ 0 - 0 + 0 -
//////////////////// /////////////////////
S = ....
b)
le dénominateur est (x + 3)² il s'annule pour x = 0 : D = R - {-3}
il est toujours positif dans D
on résout 2x - 3 < 0 (dans D)
c)
x² + 7x + 12 ≥ 0
on calcule les racines de ce polynôme
on trouve -4 et -3
d'où l'inéquation
( x+ 4)(x + 3) ≥ 0
positif à l'extérieur des racines
S = ]-∞ ; -4] U [-3 ; +∞[
je suis désolée, je n'ai pas mis tous les détails, c'est beaucoup trop long.
Aider c'est donner des explications, des idées, pour faire un exercice.
Répondre à des questions que pose un élève . Ce n'est pas faire tout un devoir.