Répondre :
Bonsoir
Développer et réduire les expressions suivantes :
E = (x + 1)²
E = x² + 2x + 1
F=(2 y + 3)²
F = 4y² + 12y + 9
G = (x - 1)²
G = x² - 2x + 1
H = (4x - 1) ²
H = 16x² - 8x + 1
1= (2-3x)²
I = 4 - 12x + 9x²
K = (n + 6)(n- 6)
K = n² - 36
L = (5 n + 7)(5n-7)
L = 25n² - 49
M = (2x-3)(x-4) + (-3x+4)²
M = 2x² - 8x - 3x + 12 + 9x² - 24x + 16
M = 2x² + 9x² - 8x - 3x - 24x + 12 + 16
M = 11x² - 35x + 28
N = (2x-3)² + (-3x+4)²
N = 4x² - 12x + 9 + 9x² - 24x + 16
N = 4x² + 9x² - 12x - 24x + 9 + 16
N = 13x² - 36x + 25
O = 4(x+2) - (2x-1)(2x+1)
O = 8x + 8 - (4x² - 1)
O = 8x + 8 - 4x² + 1
O = - 4x² + 8x + 9
P=(x+2)(2x-7)(1-3x)
P = (2x² - 7x + 4x - 14) (1 - 3x)
P = 2x² - 4x + 4x - 14 - 6x³ + 21x² - 12x² + 42x
P = - 6x³ + 2x² + 21x² - 12x² + 42x - 14
P = - 6x³ + 11x² + 42x - 14
Q = (8-5x)+(5-2x)
Q = 8 - 5x + 5 - 2x
Q = - 5x - 2x + 8 + 5
Q = - 7x + 13
R = (3x-1)² - 2(x+1)(x+3)
R = 9x² - 6x + 1 - 2 (x² + 3x + x + 3)
R = 9x² - 6x + 1 - 2x² - 6x - 2x - 6
R = 9x² - 2x² - 6x - 6x - 2x + 1 - 6
R = 7x² - 14x - 5.