Répondre :
Réponse :
Explications étape par étape
A = (x + 4) (6x - 1) + (x + 4) (7x - 2)
⇔ A = (x + 4) . [ (6x - 1) +(7x - 2) ]
⇔ A = (x + 4) ( 13x -3 )
B = (2x + 1) (x - 5) - (2x + 1) (4x + 7)
⇔ B = (2x + 1) . [ (x - 5) - (4x + 7 ) ]
⇔ B = (2x + 1) ( -3x - 12 )
C = (3x - 5)(2x - 1) - (5 - 3x) (x + 6)
⇔ C = (3x - 5 ) ( 2x - 1 ) + ( 3x - 5 ) ( x + 6) obtenir un facteur commun
⇔ C = ( 3x - 5 ) . [ ( 2x - 1 ) + (x + 6 ) ]
⇔ C = ( 3x - 5 ) . ( 3x + 5 )
D = (x - 2) (-x + 3) + (2x - 4) (3x - 7)
⇔ D = (x - 2 ) (-x + 3) + 2 ( x - 2 ) (3x - 7) 2x-4 = 2( x-2 ) et x-2 facteur commun
⇔ D = (x - 2 ) . [ (-x + 3) + 2 (3x - 7) ]
⇔ D = (x - 2 ) . ( -x + 3 + 6x - 14 )
⇔ D = (x - 2 ) . ( 5x - 11 )
E = (6x + 5) (x + 8) - (6x + 5)²
⇔ E = (6x + 5) . [ (x + 8) - (6x + 5) ]
⇔ E = (6x + 5) . ( -5x + 3 )
F = (5x - 2) (x + 3) - (2 - 5x)
⇔ F = (5x - 2) . [ ( x + 3 ) + ( 5x - 2 ) ]
⇔ F = (5x - 2) . ( 6x + 1 )
G = (x + 9) (2x - 1) - 6x² + 3x
⇔ G = (x + 9) (2x - 1) - 3x (2x - 1 ) ( 2x - 1 ) facteur commun mis en évidence
⇔ G = (2x - 1) . [ (x + 9) - 3 x ]
⇔ G = (2x - 1) . ( - 2x + 9 )