Répondre :
bonjour
x ( 5 x - 1 ) - ( 3 - 2 x ) ( 5 x - 1 ) = 0
( 5 x - 1 ) ( x - 3 + 2 x ) = 0
( 5 x - 1 ) ( 3 x - 3 ) = 0
donc x = 1/5 ou 1
Methode 1 : Première
5x2 - x - ( 15x -3 -10x2 + 2x)
5x2 - x - 15x + 3 + 10x2 - 2x
15x2 - 18x + 3 = 0
Discriminant = b2 - 4ac
= 18 carre - 45x4
= 324 - 180
= 144 > 0 : 2 solutions
x1 = (18 - racine de 144)/ 30
x1 = (18 -12 )/30
x1 = 6/30
x1 = 1/5
x2 = (-18 - racine de 144)/30
x2 = (-18-12)/30
x2 = -30/30
x2 = -1
Methode 2: Collège
= (5x-1) [x-(3-2x)]
= (5x-1) ( x -3 + 2x)
= (5x-1) (3x -3)
5x -1 = 0 ou 3x-3 = 0
x = 1/5 ou x = 1
5x2 - x - ( 15x -3 -10x2 + 2x)
5x2 - x - 15x + 3 + 10x2 - 2x
15x2 - 18x + 3 = 0
Discriminant = b2 - 4ac
= 18 carre - 45x4
= 324 - 180
= 144 > 0 : 2 solutions
x1 = (18 - racine de 144)/ 30
x1 = (18 -12 )/30
x1 = 6/30
x1 = 1/5
x2 = (-18 - racine de 144)/30
x2 = (-18-12)/30
x2 = -30/30
x2 = -1
Methode 2: Collège
= (5x-1) [x-(3-2x)]
= (5x-1) ( x -3 + 2x)
= (5x-1) (3x -3)
5x -1 = 0 ou 3x-3 = 0
x = 1/5 ou x = 1