Réponse :
On note V l'événement : "obtenir une face verte".
1) [tex]p(V) = \dfrac{2}{6}=\dfrac{1}{3}[/tex] : la probabilité d'obtenir une face verte est de 1/3.
[tex]p(\bar{V}) = 1-p(V)=1-\dfrac{1}{3} = \dfrac{2}{3}[/tex] : la probabilité de ne pas obtenir une face verte est de 2/3.
2) a) Tu peux faire un arbre pondéré, le calcul à réaliser sera le suivant : [tex]\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{3} = (\dfrac{1}{3})^3 = \dfrac{1}{27}[/tex]
b) Les deux premières colonnes sont remplies. La quatrième colonne : [tex]\dfrac{1}{27}[/tex] (c'est le calcul précédent). Troisième colonne : comme la somme des probabilités doit faire 1 : [tex]1-\dfrac{8}{27} -\dfrac{12}{27} - \dfrac{1}{27} = \dfrac{6}{27}[/tex]
c) Il s'agit d'un calcul d'espérance. On note X la variable aléatoire des gains potentiels. Alors X peut être égal à -1,5 (aucune face verte) ; -0,5 (1 face verte) ; 0,5 (deux faces vertes) ; 1,5 (trois faces vertes).[tex]E(X)=-1,5 \times p(X=-1,5) + (-0,5) \times p(X=-0,5) + 0,5 \times p(X=0,5) + 1,5 \times p(X=1,5)\\E(X) = -1,5 \times \dfrac{8}{27} - 0,5 \times \dfrac{12}{27} + 0,5 \times \dfrac{6}{27} + 1,5 \times \dfrac{1}{27}\\E(X) = \dfrac{-1}{2}[/tex]
L'espérance est strictement négative, donc ce jeu est défavorable.