Bonjour,
Je suis en TS et j'aimerai que quelqu'un m'aide et m'apporte des explications sur ces questions. Merci d'avance!!


Bonjour Je Suis En TS Et Jaimerai Que Quelquun Maide Et Mapporte Des Explications Sur Ces Questions Merci Davance class=

Répondre :

Réponse : Bonjour,

1)

[tex]\displaystyle \int_{-1}^{1} |x| \; dx=\int_{-1}^{0} -x \; dx+\int_{0}^{1} x \; dx=\left[-\frac{x^{2}}{2}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{(-1)^{2}}{2}+\frac{1^{2}}{2}\\=\frac{1}{2}+\frac{1}{2}=1[/tex]

2)

[tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{x\cos x-\sin x}{x^{2}} \; dx=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx-\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx[/tex]

On a aussi:

[tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx=\left[-\frac{1}{x} \times x\right]_{\frac{\pi}{2}}^{\pi}-\int_{\frac{\pi}{2}}^{\pi} -\frac{1}{x} \times \cos x \; dx=-1+\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx\\[/tex]

Donc:

[tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{x \cos x-\sin x}{x^{2}} \; dx=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx-\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx\\=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx+1-\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx=1[/tex]

3) On a:

[tex]\displaystyle \int_{0}^{1} \frac{x}{x+2} \; dx=\int_{0}^{1} \frac{x+2-2}{x+2} \; dx=\int_{0}^{1} 1-\frac{2}{x+2} \; dx=\int_{0}^{1} 1 \; dx-\int_{0}^{1} \frac{2}{x+2} \; dx=[x]_{0}^{1}-2 \int_{0}^{1} \frac{1}{x+2} \; dx=1-2[\ln(x+2)]_{0}^{1}=1-2(\ln(1+2)-\ln(0+2))\\=1-2(\ln(3)-\ln(2))=1-2\ln(3)+2\ln(2)[/tex]

Exercice 2

1) On a:

[tex]\displaystyle \frac{a}{x-1}+\frac{b}{2-3x}=\frac{a(2-3x)+b(x-1)}{(x-1)(2-3x)}=\frac{2a-3ax+bx-b}{(x-1)(2-3x)}=\frac{(b-3a)x+2a-b}{(x-1)(2-3x)}[/tex]

Par identification, on a:

[tex]\displaystyle \left \{ {{b-3a=-10} \atop {2a-b=8}} \right. \Leftrightarrow \left \{ {{b=-10+3a} \atop {2a+10-3a=8}} \right. \Leftrightarrow \left \{ {{b=-10+3a} \atop {-a+10=8}} \right. \Leftrightarrow \left \{ {{b=-10+3 \times 2} \atop {a=2}} \right.\\ \\ \Leftrightarrow \left \{ {{b=-4} \atop {a=2}} \right.[/tex]

On a donc que:

[tex]\displaystyle \frac{8-10x}{(x-1)(2-3x)}=\frac{2}{x-1}-\frac{4}{2-3x}\\[/tex]

2) Une primitive de la fonction f est:

[tex]\displaystyle F(x)=2\ln(x-1)-4 \times -\frac{1}{3} \ln(2-3x)=2\ln(x-1)+\frac{4}{3}\ln(2-3x)[/tex]