Répondre :
Réponse :
Explications étape par étape
Bonsoir
Factoriser si possible:
A=(2x+3)(x-4)-(2x +3)(6-x)
A = (2x + 3)(x - 4 - 6 + x)
A = (2x + 3)(2x - 10)
A = (2x + 3) * 2(x - 5)
A = 2(2x + 3)(x - 5)
B=3x au carré-9x(x-1)
B = 3x^2 - 9x^2 + 9x
B = -6x^2 + 9x
B = 3x(-2x + 3)
C=3(x+1) ^2-(x+1)(x-9)
C = (x + 1)[3(x + 1) - x + 9]
C = (x + 1)(3x + 3 - x + 9)
C = (x + 1)(2x + 12)
C = (x + 1) * 2(x + 6)
C = 2(x + 1)(x + 6)
D=x au carré-(2x+3) le tout au carré
D = (x - 2x - 3)(x + 2x + 3)
D = (-x - 3)(3x + 3)
D = (-x - 3) * 3(x + 1)
D = 3(-x - 3)(x + 1)
E=x(6x+12)-5(x au carré-4)
E = 6x(x + 2) - 5(x - 2)(x + 2)
E = (x + 2)[6x - 5(x - 2)]
E = (x + 2)(6x - 5x + 10)
E = (x + 2)(x + 10)
F=x au carré +6x+9
F = x^2 + 2 * x * 3 + 3^2
F = (x + 3)^2
G= 9x au carré-6x+1
G = (3x)^2 - 2 * 3x * 1 + 1^2
G = (3x - 1)^2
H= 25x au carré-4
H = (5x)^2 - 2^2
H = (5x - 2)(5x + 2)
I=(3x-5) le tout au carré-49
I = (3x - 5 - 7)(3x - 5 + 7)
I = (3x - 12)(3x + 2)
I = 3(x - 4)(3x + 2)
J=16(x+3) au carré-25(4x-1) le tout au carré
J = 4^2(x + 3)^2 - 5^2(4x - 1)^2
J = [4(x + 3) - 5(4x - 1)][4(x + 3) + 5(4x - 1)]
J = (4x + 12 - 20x + 5)(4x + 12 + 20x - 5)
J = (-16x + 17)(24x + 7)
K=1- 9x => pas factorisable
L= 9x au carré-30x+25-(2x+3)(3x-5)
L = (3x - 5)^2 - (2x + 3)(3x - 5)
L = (3x - 5)(3x - 5 - 2x - 3)
L = (3x - 5)(x - 8)