Répondre :
Bonsoir
Moyenne de 500 spectateurs pour un prix unitaire de 19 euros
si le prix baisse de 1 euro alors le nombre spectateurs augmente de 80
1)
Le graphique 2 correspond le plus à la fonction Baisse de prix par rapport à la Recette
car la baisse est au pas de 1 euro
2)
Le directeur doit baisser ses prix de 6 euros environ pour avoir une recette maximale
3)
Fonction définie pour 0 < n < 19 puisque le prix de base de la place est de 19 euros
b)
Recette = (Prix de la place)*(Nombre de spectateurs)
Prix de la place = (19 - n) où n est le nombre de baisse de 1 euro accordée
Nombre spectateurs = (500 en moyenne) + (80*n) puisque hausse de 80 spectateurs à chaque baisse
R(n) = (19-n)(500+80n)
R(n) = -80n²+1020n+9500
la recette sera maximale pour n = -b/2a = -1020/-160 = 6.375 soit 6 euros de baisse
R(6) = (19-6)(500+80*6) = 12740 euros
Moyenne de 500 spectateurs pour un prix unitaire de 19 euros
si le prix baisse de 1 euro alors le nombre spectateurs augmente de 80
1)
Le graphique 2 correspond le plus à la fonction Baisse de prix par rapport à la Recette
car la baisse est au pas de 1 euro
2)
Le directeur doit baisser ses prix de 6 euros environ pour avoir une recette maximale
3)
Fonction définie pour 0 < n < 19 puisque le prix de base de la place est de 19 euros
b)
Recette = (Prix de la place)*(Nombre de spectateurs)
Prix de la place = (19 - n) où n est le nombre de baisse de 1 euro accordée
Nombre spectateurs = (500 en moyenne) + (80*n) puisque hausse de 80 spectateurs à chaque baisse
R(n) = (19-n)(500+80n)
R(n) = -80n²+1020n+9500
la recette sera maximale pour n = -b/2a = -1020/-160 = 6.375 soit 6 euros de baisse
R(6) = (19-6)(500+80*6) = 12740 euros