Répondre :
L'exercice 2.
Carré magique multiplicatif
principe: tous les termes de chaque ligne ,chaque colonne et chaque diagonale multipliés entre eux donnent le même résultat.
-commencer par la diagonale, car elle est complète et permettra de connaître le résultat auquel il faut arriver
5^-4 *5^-1 *5^2 = 5^-5 * 5^2 = 5^-3
- deuxième diagonale : 1* 5^-1 * x = 5^-3⇔x = 5^-3/5^-1 ⇔x =5^-3 *5 ⇔ x=5^-2
- première ligne : 5^-4 *x*1 =5^-3 ⇔x= 5^-3/5^-4 ⇔x= 5^-3*5^4⇔x=5
- première colonne : 5^-4 * x *5^-2=5^-3 ⇔5^-6*x = 5^-3 ⇔x =5^-3/5^-6⇔x=5^3
- deuxième colonne: 5*5^-1*x=5^-3 ⇔x=5^-3
- troisième colonne : 1*x*5^2=5^-3 ⇔ x= 5^-3/5^2 ⇔x= 5^-3*5^-2⇔x= 5^-5
et maintenant tu peux vérifier que les multiplications par lignes, colonnes ou diagonales donneront toujours le même résultat.
Carré magique multiplicatif
principe: tous les termes de chaque ligne ,chaque colonne et chaque diagonale multipliés entre eux donnent le même résultat.
-commencer par la diagonale, car elle est complète et permettra de connaître le résultat auquel il faut arriver
5^-4 *5^-1 *5^2 = 5^-5 * 5^2 = 5^-3
- deuxième diagonale : 1* 5^-1 * x = 5^-3⇔x = 5^-3/5^-1 ⇔x =5^-3 *5 ⇔ x=5^-2
- première ligne : 5^-4 *x*1 =5^-3 ⇔x= 5^-3/5^-4 ⇔x= 5^-3*5^4⇔x=5
- première colonne : 5^-4 * x *5^-2=5^-3 ⇔5^-6*x = 5^-3 ⇔x =5^-3/5^-6⇔x=5^3
- deuxième colonne: 5*5^-1*x=5^-3 ⇔x=5^-3
- troisième colonne : 1*x*5^2=5^-3 ⇔ x= 5^-3/5^2 ⇔x= 5^-3*5^-2⇔x= 5^-5
et maintenant tu peux vérifier que les multiplications par lignes, colonnes ou diagonales donneront toujours le même résultat.