Répondre :
Bonsoir,
1a) Le triangle OSC est rectangle en S.
Par Pythagore : CO² = OS² + SC³
CO² = 1² + 2²
CO² = 1 + 4
CO² = 5
[tex]CO=\sqrt{5}[/tex]
Le triangle ASC est rectangle en S.
Par Pythagore : CA² = AS² + SC³
CA² = 4² + 2²
CA² = 16 + 4
CA² = 20
[tex]CO=\sqrt{20}[/tex]
b) Le triangle AOC est rectangle en C.
Utilisons la réciproque du théorème de Pythagore.
[tex]OA^2=5^2=25\\CO^2=(\sqrt{5})^2=5\\CA^2=(\sqrt{20})^2=20[/tex]
Puisque 25 = 5 + 20, nous déduisons que OA² = CO² + CA².
Par la réciproque du théorème de Pythagore, le triangle AOC est rectangle et [OA] est l'hypoténuse.
L'angle OCA est un angle droit.
2 a) [tex]Aire\ du\ triangle\ AOC = \dfrac{1}{2}\times CO \times CA =\dfrac{1}{2}\times\sqrt{5}\times\sqrt{20}[/tex]
ou encore
[tex]Aire\ du\ triangle\ AOC = \dfrac{1}{2}\times OA \times SC =\dfrac{1}{2}\times5\times2=5[/tex]
b) [tex]\sqrt{5\times20}=\sqrt{100}=10[/tex]
Par le a), nous avons : [tex]\dfrac{1}{2}\times\sqrt{5}\times\sqrt{20}=5[/tex],
soit [tex]\sqrt{5}\times\sqrt{20}=2\times5 = 10[/tex]
Conclusion : [tex]\sqrt{5\times20}=\sqrt{5}\times\sqrt{20}[/tex]
1a) Le triangle OSC est rectangle en S.
Par Pythagore : CO² = OS² + SC³
CO² = 1² + 2²
CO² = 1 + 4
CO² = 5
[tex]CO=\sqrt{5}[/tex]
Le triangle ASC est rectangle en S.
Par Pythagore : CA² = AS² + SC³
CA² = 4² + 2²
CA² = 16 + 4
CA² = 20
[tex]CO=\sqrt{20}[/tex]
b) Le triangle AOC est rectangle en C.
Utilisons la réciproque du théorème de Pythagore.
[tex]OA^2=5^2=25\\CO^2=(\sqrt{5})^2=5\\CA^2=(\sqrt{20})^2=20[/tex]
Puisque 25 = 5 + 20, nous déduisons que OA² = CO² + CA².
Par la réciproque du théorème de Pythagore, le triangle AOC est rectangle et [OA] est l'hypoténuse.
L'angle OCA est un angle droit.
2 a) [tex]Aire\ du\ triangle\ AOC = \dfrac{1}{2}\times CO \times CA =\dfrac{1}{2}\times\sqrt{5}\times\sqrt{20}[/tex]
ou encore
[tex]Aire\ du\ triangle\ AOC = \dfrac{1}{2}\times OA \times SC =\dfrac{1}{2}\times5\times2=5[/tex]
b) [tex]\sqrt{5\times20}=\sqrt{100}=10[/tex]
Par le a), nous avons : [tex]\dfrac{1}{2}\times\sqrt{5}\times\sqrt{20}=5[/tex],
soit [tex]\sqrt{5}\times\sqrt{20}=2\times5 = 10[/tex]
Conclusion : [tex]\sqrt{5\times20}=\sqrt{5}\times\sqrt{20}[/tex]