On a donc C(n+1)= (1+t) (Cn -A)
D'autre part Vn= Cn - A/t = (Cn*t - A)/t
D'où V(n+1)= (C(n+1)t -A)/t
Les deux expressions sont donc divisées par t et comme le but est de
diviser l'une par l'autre, on ne va pas s'occuper du t: ça simplifiera
l'écriture.
Dans l'expression V(n+1)= (C(n+1)t -A) on va remplacer C(n+1) par sa valeur en fonction de Cn.
Ca va donner au Bout V(n+1)=Cn*t^2 + t(Cn-A) - A
On va chercher les racines de cette expression pour la factoriser.
delta= (Cn-A)^2 +4A*Cn= Cn^2+A^2-2A*Cn+4A*Cn
Ce qui donne delta= (Cn+A)^2
On calcule les racines et ça donne t=A/Cn et t=-1
On factorise selon la formule a(x-x1)*(x-x2)
ce qui donne Cn*(t - A/Cn)*(t+1) = (t*Cn-A)*(t+1)
et là quand on divise par Vn ça donne bien t+1
Voilà.