On considère les entiers N pouvant s'écrire N=n^2 avec n nier est un carré parfait) 

a) démontrer que si N est pair alors n est pair. 

b) démontrer que si N est impair alors n est impair 



Répondre :

Il faut démontrer la contraposée: si n est impair alors N est impaire.
si n est impair il peut s'écrire n=2p+1 donc n^2= 4p^2+1+4p= 2(2p^2+2p) +1
On a donc un nombre pair (multiple de 2) auquel on ajoute 1. Ca donne donc un nombre impair.
Donc la proposition si N est pair alors n est pair est vraie.
même chose pour le b) en posant n=2q