Bonjour pourriez vous m'aider à résoudre cet exercice svp? (c'est le chapitre des dérivation

f est une fonction définie sur un intervalle I et a  I tel que f soit dérivable en a. On note f la courbe représentative de f dans un repère du plan, A le point de f ayant pour abscisse a et  la tangente à f au point A.a. Expliquer pourquoi il existe un nombre réel p tel que la droite  ait pour équation y = p + f (a) × x.b. Déterminer une expression de p en utilisant que A appartient à f. En déduire une équation de .